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Abstract: In-flight icing encounters can jeopardise the performance and handling qualities of rotor-
craft and hence pose a serious threat to flight safety.1 As a consequence, numerical techniques have
received interest as an alternative approach towards understanding the rotorcraft icing phenomena. Hy-
brid two/three-dimensional reduced-order methods have predominantly been used for the prediction of
rotorcraft ice accretion over the past decade,2–9 which is disconcerting given that rotorcraft are domi-
nated by three-dimensional flow features. Recently work published at Nanjing University of Aeronautics
and Astronautics provided the first fully three-dimensional rotor icing technique.10–12

This work seeks to further establish high-fidelity, three-dimensional rotorcraft icing prediction codes
in an effort to improve rotorcraft safety in the harshest of cold weather environments. A critical area which
requires attention is the operation of rotorcraft in Supercooled Large Water droplets (SLD). Attempting to
replicate such icing conditions using standard artificial in-flight icing trails and sub-scale experimental
models has been identified to be particularly challenging. Furthermore, clouds containing SLD are asso-
ciated with high rates of ice accretion and subsequently represent some of the most dangerous conditions.

Within this work a new framework is introduced to simulated rotorcraft icing in SLD conditions. The
framework presents techniques including radial basis function mesh deformation, Lagrangian particle
tracking, and ice shedding to simulate rotorcraft icing. The experiment conducted on the Spinning Rotor
Blade (SRB-II) sub-scale model rotor has been chosen for the assessment of the numerical models in reg-
ular icing conditions. Numerical predictions of the ice accretion and shedding process are presented for
several temperature-dependent tests. Quantities used for comparisons between the numerical predictions
and experimental measurements on the SRB-II include the ice thickness and shedding location. Numerical
predictions are shown to be in good agreement with the measured data at all temperatures. Additionally,
the outcome of influential parameters which directly impact rotor ice shapes are assessed. In particular,
the model for the temperature profiles within the ice layer, and the centrifugally induced movement of the
liquid film. Hereinafter, the operation of the SRB-II rotor in SLD conditions is investigated. To that end,
the influence of droplet splashing on impact is highlighted as being of first order importance for SLD. The
location of the primary and secondary droplets is presented and its influence of the ice accretion.
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